1. Skip to navigation
  2. Skip to content
  3. Skip to sidebar

SHARE THIS STORY:



In the News

US News

Jan 8, 2015
interviewed Peter Vanable, chair and professor of psychology for an article exploring the psychological effects of living with HIV.
--------------------------------

The Washington Post

Jan 7, 2015
featured an op-ed about the value of the liberal arts, written by Associate Dean Gerry Greenberg.
--------------------------------

Chronicle of Higher Education

Jan 6, 2015
spoke with Crystal Bartolovich, associate professor of English about the modesty in today's literary criticism.
--------------------------------

NBC Connecticut

Jan 5, 2015
featured a story about Communication Sciences and Disorders' Jonathan Preston's research using ultra-sound technology to help children overcome speech challenges.
--------------------------------

"The Colbert Report"

Dec 18, 2014
included George Saunders G'88, professor of English, in its star-studded series finale. Saunders was a popular guest on the show.
--------------------------------

The Daily Mail (U.K.)

Dec 17, 2014
featured research by Susan Parks, assistant professor of biology, about how whales communicate. The story was picked up by other international outlets, including Phys.org, Nature World News, The Hindu, and India.com.
--------------------------------

Philly.com

Dec 16, 2014
interviewed Jason Wiles, assistant professor of biology, about "Bill Nye the Science Guy."
--------------------------------

WRVO Public Media

Dec 11, 2014
spoke with Afton Kapuscinski G'12, director of the Psychological Services Center, about seasonal affective disorder.
--------------------------------

Public Broadcasting System

Dec 10, 2014
is airing a discussion between Gustav Niebuhr, associate professor of religion and media at Syracuse; and Elaine Pagels, the Harrington Spear Paine Foundation Professor of Religion at Princeton University. The interview is part of PBS' "Great Conversation" series.
--------------------------------

Variety.com

Dec 10, 2014
interviewed Stephen C. Meyer, associate professor of music history and cultures, about the ongoing popularity of "lavish symphonic" soundtracks.
--------------------------------

"Bridge Street" (WSYR-TV)

Dec 4, 2014
featured a performance by members of the Syracuse University Brass Ensemble (SUBE), as well as a conversation with James T. Spencer, SUBE music director and FNSSI executive director. The clip was in support of "Holidays at Hendricks."
--------------------------------

SU geologists prove early Tibetan Plateau was larger than previously thought

Professor Gregory Hoke says parts of ancient plateau were 600 miles longer

Apr 10, 2014 | Article by: Rob Enslin

Photo of Greg Hoke

Gregory Hoke


Earth scientists in Syracuse University’s College of Arts and Sciences have determined that the Tibetan Plateau—the world’s largest, highest, and flattest plateau—had a larger initial extent than previously documented.  



Their discovery is the subject of an article in the journal Earth and Planetary Science Letters (Elsevier, 2014).

Gregory Hoke, assistant professor of Earth sciences, and Gregory Wissink, a Ph.D. student in his lab, have co-authored the article with Jing Liu-Zeng, director of the Division of Neotectonics and Geomorphology at the Institute for Geology, part of the China Earthquake Administration; Michael Hren, assistant professor of chemistry at the University of Connecticut; and Carmala Garzione, professor and chair of Earth and environmental sciences at the University of Rochester. Hoke's research was funded by the Tectonics Program, part of the National Science Foundation's Division of Earth Sciences.

"We’ve determined the elevation history of the southeast margin of the Tibetan Plateau,” says Hoke, who specializes in the interplay between the Earth’s tectonic and surface processes. “By the Eocene epoch (approximately 40 million years ago), the southern part of the plateau extended some 600 miles more to the east than previously documented. This discovery upends a popular model for plateau formation.

"

Known as the “Roof of the World,” the Tibetan Plateau covers more than 970,000 square miles in Asia and India and reaches heights of over 15,000 feet. The plateau also contains a host of natural resources, including large mineral deposits and tens of thousands of glaciers, and is the headwaters of many major drainage basins.

Hoke says he was attracted to the topography of the plateau’s southeast margin because it presented an opportunity to use information from minerals formed at the Earth’s surface to infer what happened below them in the crust.

“The tectonic and topographic evolution of the southeast margin has been the subject of considerable controversy,” he says. “Our study provides the first quantitative estimate of the past elevation of the eastern portions of the plateau.”

Historically, geologists have thought that lower crustal flow—a process by which hot, ductile rock material flows from high- to low-pressure zones—helped elevate parts of the plateau about 20 million years ago. (This uplift model has also been used to explain watershed reorganization among some of the world's largest rivers, including the Yangtze in China.)

But years of studying rock and water samples from the plateau have led Hoke to rethink the area's history. For starters, his data indicates that the plateau has been at or near its present elevation since the Eocene epoch. Moreover, surface uplift in the southernmost part of the plateau—in and around southern China and northern Vietnam—has been historically small.

Photo of the Tibetan Plateau

A view of the Mekong (Lancang) River canyon, as it traverses and cuts the southeast margin of the Tibetan Plateau near Deqen, in China's Yunnan Province.

“Surface uplift, caused by lower crustal flow, doesn't explain the evolution of regional river networks,” says Hoke, referring to the process by which a river drainage system is diverted, or captured, from its own bed into that of a neighboring bed. “Our study suggests that river capture and drainage reorganization must have been the result of a slip on the major faults bounding the southeast plateau margin."

Hoke's discovery not only makes the plateau larger than previously thought, but also suggests that some of the topography is millions of years younger.

“Our data provides the first direct documentation of the magnitude and geographic extent of elevation change on the southeast margin of the Tibetan Plateau, tens of millions years ago,” Hoke adds. “Constraining the age, spatial extent, and magnitude of ancient topography has a profound effect on how we understand the construction of mountain ranges and high plateaus, such as those in Tibet and the Altiplano region in Bolivia.”

Housed in The College of Arts and Sciences, the Department of Earth Sciences specializes in the teaching and study of tectonics, ancient climates, and hydrology.

---------------------------------------------

Contact Information

Rob Enslin
315-443-3403
rmenslin@syr.edu

Upcoming Events